Clustering with missing features: a penalized dissimilarity measure based approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering with Missing Features: A Penalized Dissimilarity Measure based approach

Many real-world clustering problems are plagued by incomplete data characterized by missing or absent features for some or all of the data instances. Traditional clustering methods cannot be directly applied to such data without preprocessing by imputation or marginalization techniques. In this article, we put forth the concept of Penalized Dissimilarity Measures which estimate the actual dista...

متن کامل

A New Dissimilarity Measure for Clustering Seismic Signals

Hypocenter and focal mechanism of an earthquake can be determined by the analysis of signals, named waveforms, related to the wave field produced and recorded by a seismic network. Assuming that waveform similarity implies the similarity of focal parameters, the analysis of those signals characterized by very similar shapes can be used to give important details about the physical phenomena whic...

متن کامل

Clustering and a Dissimilarity Measure for Methadone Dosage Time Series

In this work we analyze data for 314 participants of a methadone study over 180 days. Dosages in mg were converted for better interpretability to seven categories in which six categories have an ordinal scale for representing dosages and one category for missing dosages. We develop a dissimilarity measure and cluster the time series using “partitioning around medoids” (PAM). The dissimilarity m...

متن کامل

A dissimilarity measure for the k-Modes clustering algorithm

Clustering is one of the most important data mining techniques that partitions data according to some similarity criterion. The problems of clustering categorical data have attracted much attention from the data mining research community recently. As the extension of the k-Means algorithm, the k-Modes algorithm has been widely applied to categorical data clustering by replacing means with modes...

متن کامل

Extending k-Representative Clustering Algorithm with an Information Theoretic-based Dissimilarity Measure for Categorical Objects

This paper aims at introducing a new dissimilarity measure for categorical objects into an extension of k-representative algorithm for clustering categorical data. Basically, the proposed dissimilarity measure is based on an information theoretic definition of similarity introduced by Lin [15] that considers the amount of information of two values in the domain set. In order to demonstrate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2018

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-018-5722-4